SRI KRISHNA INSTITUTE OF TECHNOLOGY, BANGALORE

COURSE PLAN

Academic Year 2019

Program:	B E
Semester:	2
Course Code:	18MAT21
Course Title:	Advanced Calculus and Numerical Methods
Credit / L-T-P:	$4 / 3-2-0$
Total Contact Hours:	50
Course Plan Author:	Veeresha A Sajjanara

Academic Evaluation and Monitoring Cell

SRI KRISHNA INSTITUTE OF TECHNOLOGY BANGALORE - 560090, KARNATAKA, INDIA

Phone 080-23721477/ 28362221
www.skit.org e-mail: skitprinci1@gmail.com

Table of Contents

A. COURSE INFORMATION 3

1. Course Overview 3
2. Course Content. 3
3. Course Material 4
4. Course Prerequisites 4
5. Content for Placement, Profession, HE and GATE 5
B. OBE PARAMETERS 5
6. Course Outcomes 5
7. Course Applications 6
8. Mapping And Justification. 6
9. Articulation Matrix 10
10. Curricular Gap and Content. 11
11. Content Beyond Syllabus 11
C. COURSE ASSESSMENT. 11
12. Course Coverage 11
13. Continuous Internal Assessment (CIA) 11
D1. TEACHING PLAN - 1 12
Module - 1 12
Module - 2 13
E1. CIA EXAM - 1 14
a. Model Question Paper - 1 14
b. Assignment -1 15
D2. TEACHING PLAN - 2 17
Module - 3 17
Module - 4 18
E2. CIA EXAM - 2 19
a. Model Question Paper - 2 19
b. Assignment - 2 19
D3. TEACHING PLAN - 3 23
Module - 5 23
E3. CIA EXAM - 3 24
a. Model Question Paper - 3 24
b. Assignment - 3 25
F. EXAM PREPARATION 27
14. University Model Question Paper 27
15. SEE Important Questions 29
G. Content to Course Outcomes. 30
16. TLPA Parameters 30
17. Concepts and Outcomes: 31
Note : Remove "Table of Content" before including in CP Book Each Course Plan shall be printed and made into a book with cover page Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher
levels

A. COURSE INFORMATION

1. Course Overview

Degree:	BE	Program:	CV/ISE
Semester:	2	Academic Year:	2018-19
Course Title:	Advanced Calculus and Numerical Methods	Course Code:	18MAT21
Credit / L-T-P:	4/4-0-0	SEE Duration:	180 Minutes
Total Hours:	50 Hours	SEE Marks:	100 Marks
CIA Marks:	50 Marks	Assignment	1 / Module
Course Author:	Veeresha A Sajjanara	Sign ..	Dt:
Checked By:	Pavani A	Sign ..	Dt:
CO Targets	CIA Target : \%	SEE Target: \%

Note: Define CIA and SEE \% targets based on previous performance.

2. Course Content

Content / Syllabus of the course as prescribed by University or designed by institute. Identify 2 concepts per module as in G.

Mod ule	Content	Teachi ng Hours	Identified Module Concepts	Blooms Learning Levels
1	Scalar and Vector fields, Gradient, directional derivative,curl and divergence-physical interpretation: solenoidal and irrotational vector fields-illustrative problems.	5	Vector Differentiation	L3
1	Line Integrals, Theorems of Green, Gauss and Stokes(without proof). Applications to work done by force and flux.	5	Vector Integration	L3
2	Second order Linear ODE's with constant coefficientsInverse differential operators, method of variation of parameters.	5	Ordinary Differential equation	L3
2	Cauchy's and Legendre homogeneous equations. Applications to oscillations of a spring and L-C-R circuits.	5	Ordinary Differential equation	L3
3	Formation of PDE's by elimination of arbitrary constants and functions. Solution of non-homogeneous PDE by direct integration. Homogeneous PDEs involving derivative with respect to one independent variable only. Solution of Lagrange's linear PDE. Derivative of one dimensional heat and wave equations and solutions by the method of separation of variables.	6	Partial Differential equation	L3
3	Derivative of one dimensional heat and wave equations and solutions by the method of separation of variables.	4	Partial Differential equation	L3
4	Series of positive terms-convergence and divergence. Cauchy's root test and D'Alembert's ratio test(without proof)-illustrative examples.	5	Infinite series	L3
	Series solution of Bessel's differential equation leading to $\mathrm{Jn}(\mathrm{x})$-Bessel's function of first kind-orthogonality. Series solution of Legendre polynomials. Rodrigue's formula(without proof), problems.	5	Power series	L3
5	Finite differences, Interpolation/extrapolation using Newton's forward and backward difference formulae, Newton's divided difference and Lagrange's formulae(All formulae without proof).	5	Numerical methods	L3
5	Solution of polynomial and transcendental equations-	5	Numerical	L3

	Newton-Raphson and Regula-Falsi methods(only formulae)-illustrative examples.Simpson's (1/3) and $(3 / 8)^{\text {th }}$ rules, Weddle's rule(without proof)-Problems.	methods		
-	Total	$\mathbf{5 4}$	-	$\mathbf{-}$

3. Course Material

Books \& other material as recommended by university (A, B) and additional resources used by course teacher (C).

1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15-30 minutes
2. Design: Simulation and design tools used - software tools used ; Free / open source
3. Research: Recent developments on the concepts - publications in journals; conferences etc.

$\begin{gathered} \hline \text { Modul } \\ \text { es } \end{gathered}$	Details		Availability
A	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
1	B.S.Grewal: Higher Engineering Mathematics, Khanna publishers, 43 ${ }^{\text {rd }}$ Ed., 2015.	1,2,10	In Dept
2	E.Kreyszig: Advanced Engineering Mathematics,John Wiley \& Sons, $10^{\text {th }}$ Ed.(Reprint), 2016.		Not Available
B	Reference books (Title, Authors, Edition, Publisher, Year.)	-	-
1	C Ray Wylie, Louis C Barrett: "Advanced Engineering Mathematics",6th Edition, 2.McGraw-Hill Book Co.,New york,1995.		Not Available
2	James Stewart:"Calculus- Early Transcendentals", Cengage Learning India Private Ltd.,2017.		Not Available
3	B.V.Ramana:"Higher Engineering Mathematics" $11^{\text {th }}$ Edition Tata McGraw-Hill,2010.	1,5,6,7	In Dept
4	Srimanta Pal \& Subobh C Bhunia: "Engineering Mathematics", Oxford UniversityPress, $3^{\text {rd }}$ Reprint, 2016.		Not Available
5	Gupta C B, Singh S R and Mukesh Kumar:"Engineering Mathematics for Semesterl and II, Mc-Graw Hill Education(India)Pvt.Ltd., 2015 .		Not Available
C	Concept Videos or Simulation for Understanding	-	-
C1	https://nptel.ac.in/course.html		
C2	http://www.class-central.com/subject/maths		
C3	http://academicearth.org/		
C4	e-learning@vtu		
C5	e-shikshana@vtu		
D	Software Tools for Design	-	-
E	Recent Developments for Research	-	-
F	Others (Web, Video, Simulation, Notes etc.)	-	-

4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.
Students must have learnt the following Courses / Topics with described Content . . .

Mod ules	Course Code	Course Name	Topic / Description	Sem	Remarks	Blooms Level

COURSE PLAN - CAY 2018-19

-						
-						

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry \& profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.
Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Mod ules	Topic / Description	Area	Remarks	Blooms Level
1				
3				
3				
5				
-				
-				

B. OBE PARAMETERS

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs. Identify a max of 2 Concepts per Module. Write 1 CO per Concept.

Mod ules	Course Code.\#	Course Outcome At the end of the course, student should be able to .	Teach. Hours	Concept	Instr Method	$\begin{aligned} & \text { Assessm } \\ & \text { ent } \\ & \text { Method } \end{aligned}$	Blooms' Level
1	18MAT21	Illustrate the applications of multivariate calculus to understand the solenoidal and irrotational vectors.	5	Vector Differentia tion	Lecture	Assignm ent and slip test	L2
1	18MAT21	Exhibit the interdependence of line, surface and volume integrals.	5	Vector Integratio n	Lecture	Assignm ent and slip test	L3
2	18MAT21	Demonstrate various physical models through higher order differential equations and solve such linear .Ordinary differential equation.	5	Ordinary Differentia I equations	Lecture	Assignm ent and slip test	L3
2	18MAT21	To study the behaviour of LCR circuits and oscillations of springs using Ordinary differential equation..	5	Ordinary Differentia \| equations	Lecture	Assignm ent and slip test	L3
3	18MAT21	Construct a variety of partial differential equations.	6	Partial Differentia I equations	Lecture	Assignm ent and slip test	L3
3	18MAT21	To find solution by exact methods/method separation of variables.	4	Partial Differentia \| equations	Lecture	Assignm ent and slip test	L3
4	18MAT21	To explain the applications of infinite series.	5	Infinite series	Lecture	Assignm ent and slip test	L3
4	18MAT21	To obtain series solution Of Ordinary differential equation.	5	Power series	Lecture	Assignm ent and slip test	L3

COURSE PLAN - CAY 2018-19

5	18MAT21	Apply the knowledge of numerical methods in the modeling of various physical and engineering phenomena.	5	Numerical methods	Lecture	Assignm ent and slip test	L3
5	18 MAT21	Numericalintegration comprises a broad of algorithms for calculating the numerical value of definite integral.Numerical methods	Lecture	Assignm ent and slip test	L3		
-	-	Total	$\mathbf{5 0}$	-	$\mathbf{-}$	$\mathbf{-}$	

2. Course Applications

Write 1 or 2 applications per CO.
Students should be able to employ / apply the course learnings to . . .

Mod ules	Application Area Compiled from Module Applications.	CO	Level
1	Used extensively in physics and engineering especially in the description of electromagnetic fields, gravitational fields and fluid flow.	1	L3
1	Used in computational electrodyanmics simulation.	2	L3
2	Used in computational fluid dynamics	3	L3
2	Used in studying the behaviour of LCR circuits and oscillations of springs	4	L3
3	It is used to describe a wide variety of phenomena such as sound,heat and diffusion.	5	L3
3	It is used to describe a wide variety of phenomena such as electrostatics,electrodynamics and quantum mechanics.	6	L3
4	It is used for analysis of current flow and sound waves in electric circuits.	7	L3
4	It is used in nuclear engineering analysis.	8	L3
5	Used in network simulation and weather prediction	9	L3
	Used in computer science for root algorithm and multidimensional root finding.	10	L3

3. Mapping And Justification

CO - PO Mapping with mapping Level along with justification for each CO-PO pair.
To attain competency required (as defined in POs) in a specified area and the knowledge \& ability required to accomplish it.

Mod ules	Mapping		Mapping Level	Justification for each CO-PO pair	$\begin{gathered} \text { Lev } \\ \text { el } \end{gathered}$
-	CO	PO	-	‘Area’: ‘Competency’ and ‘Knowledge’ for specified 'Accomplishment'	-
1	CO1	PO1	L3	‘Engineering Knowledge:' - Acquisition of Knowledge of Vector Differentiation is essential to accomplish solutions to complex engineering problems.	L3
1	CO1	PO 2	L3	'Problem Analysis’: Analyzing problems require knowledge / understanding of Vector Differentiation accomplish solutions to complex engineering problems .	L3
1	CO1	PO3	L3	‘Design / Development of Solutions’: Design \& development of solutions require knowledge / understanding \& analysis Vector Differentiation to accomplish solutions to complex engineering problems .	L3
1	CO1	PO4	L3	Conduct investigations of complex engineering problems: using research based knowledge and research methods in vector Differentiation to accomplish solutions to complex engineering problems.	L3
1	CO1	PO9	L3	Individual and team work: Function effectively as an individual in multidisciplinary settings using vector Differentiation to achieve solutions to complex engineering problems.	L3
1	CO1	PO11	L3	Project management and finance: Demonstrate knowledge to manage projects using vector Differentiation to attain solutions to	L3

				complex engineering problems.	
1	CO1	PO12	L3	Life-long learning: Recognize the need for life- long learning with practical applications in engineering field using vector Differentiation.	L3
1	CO2	PO1	L3	'Engineering Knowledge:' - Acquisition of Knowledge of Vector Integration is essential to accomplish solutions to complex engineering problems.	L3
1	CO2	PO2	L3	‘Problem Analysis’: Analyzing problems require knowledge / understanding of Vector Integration accomplish solutions to complex engineering problems.	L3
1	CO2	PO3	L3	‘Design / Development of Solutions': Design \& development of solutions require knowledge / understanding \& analysis Vector Integration to accomplish solutions to complex engineering problems.	L3
1	CO2	PO4	L3	Conduct investigations of complex engineering problems: using research based knowledge and research methods in vector Integration to accomplish solutions to complex engineering problems.	L3
1	CO2	PO10	L3	Communication: Communicate effectively on complex engineering activities using vector integration.	L3
1	CO2	PO11	L3	Project management and finance: Demonstrate knowledge to manage projects using vector Integration to attain solutions to complex engineering problems.	L3
1	CO2	PO12	L3	Life-long learning: Recognize the need for life- long learning with practical applications in engineering field using vector Integration.	L3
2	CO3	PO1	L3	'Engineering Knowledge:' - Acquisition of Knowledge of Ordinary differential equations is essential to accomplish solutions to complex engineering problems.	L3
2	CO3	PO2	L3	‘Problem Analysis’: Analyzing problems require knowledge / understanding of Ordinary differential equations accomplish solutions to complex engineering problems .	L3
2	CO3	PO3	L3	‘Design / Development of Solutions': Design \& development of solutions require knowledge / understanding \& analysis Ordinary differential equations to accomplish solutions to complex engineering problems.	L3
2	CO3	PO4	L3	Conduct investigations of complex engineering problems: using research based knowledge and research methods in Ordinary differential equations to accomplish solutions to complex engineering problems.	L3
2	CO3	PO9	L3	Individual and team work: Function effectively as an individual in multidisciplinary settings using Ordinary differential equations to achieve solutions to complex engineering problems.	L3
2	CO3	PO11	L3	Project management and finance:Demonstrate knowledge to manage projects using Ordinary differential equations to attain solutions to complex engineering problems.	L3
2	CO3	PO12	L3	Life-long learning: Recognize the need for life- long learning with practical applications in engineering field using Ordinary differential equations.	L3
2	CO4	PO1	L3	'Engineering Knowledge:' - Acquisition of Knowledge of Ordinary differential equations is essential to accomplish solutions to complex engineering problems.	L3
2	CO4	PO2	L3	'Problem Analysis': Analyzing problems require knowledge / understanding of Ordinary differential equations accomplish solutions to complex engineering problems .	L3
2	CO4	PO3	L3	‘Design / Development of Solutions': Design \& development of solutions require knowledge / understanding \& analysis Ordinary differential equations to accomplish solutions to complex engineering problems.	L3
2	CO4	PO4	L3	Conduct investigations of complex engineering problems: using	L3

COURSE PLAN - CAY 2018-19

				research based knowledge and research methods in Ordinary differential equations to accomplish solutions to complex engineering problems.	
2	CO4	PO9	L3	Individual and team work: Function effectively as an individual in multidisciplinary settings using Ordinary differential equations to achieve solutions to complex engineering problems.	L3
2	CO4	PO11	L3	Project management and finance:Demonstrate knowledge to manage projects using Ordinary differential equations to attain solutions to complex engineering problems.	L3
2	CO4	PO12	L3	Life-long learning: Recognize the need for life- long learning with practical applications in engineering field using Ordinary differential equations.	L3
3	CO5	PO1	L3	‘Engineering Knowledge:' - Acquisition of Knowledge of Partial Differential equations is essential to accomplish solutions to complex engineering problems.	L3
3	CO5	PO2	L3	‘Problem Analysis’: Analyzing problems require knowledge / understanding of Partial Differential equations accomplish solutions to complex engineering problems .	L3
3	CO5	PO3	L3	'Design / Development of Solutions': Design \& development of solutions require knowledge / understanding \& analysis Partial Differential equations to accomplish solutions to complex engineering problems .	L3
3	CO5	PO4	L3	Conduct investigations of complex engineering problems: using research based knowledge and research methods in Partial Differential equations to accomplish solutions to complex engineering problems.	L3
3	CO5	PO10	L3	Communication: Communicate effectively on complex engineering activities using Partial Differential equations.	L3
3	CO5	PO11	L3	Project management and finance:Demonstrate knowledge to manage projects using Partial Differential equations to attain solutions to complex engineering problems.	L3
3	CO5	PO12	L3	Life-long learning: Recognize the need for life- long learning with practical applications in engineering field using Partial Differential equations.	L3
3	CO6	PO1	L3	'Engineering Knowledge:' - Acquisition of Knowledge of Partial differential equations is essential to accomplish solutions to complex engineering problems.	L3
3	C06	PO2	L3	'Problem Analysis': Analyzing problems require knowledge / understanding of Partial differential equations accomplish solutions to complex engineering problems .	L3
3	C06	PO3	L3	'Design / Development of Solutions': Design \& development of solutions require knowledge / understanding \& analysis Partial differential equations to accomplish solutions to complex engineering problems.	L3
3	C06	PO4	L3	Conduct investigations of complex engineering problems: using research based knowledge and research methods in Partial differential equations to accomplish solutions to complex engineering problems.	L3
3	C06	PO9	L3	Individual and team work: Function effectively as an individual in multidisciplinary settings using Partial differential equations to achieve solutions to complex engineering problems.	L3
3	C06	PO11	L3	Project management and finance:Demonstrate knowledge to manage projects using Partial differential equations to attain solutions to complex engineering problems.	L3
3	CO6	PO12	L3	Life-long learning: Recognize the need for life- long learning with practical applications in engineering field using Partial differential equations.	L3
4	CO7	PO1	L3	'Engineering Knowledge:' - Acquisition of Knowledge of Infinite series is essential to accomplish solutions to complex engineering	L3

				problems.	
4	CO7	PO2	L3	‘Problem Analysis’: Analyzing problems require knowledge / understanding of Infinite series accomplish solutions to complex engineering problems.	L3
4	CO7	PO3	L3	'Design / Development of Solutions': Design \& development of solutions require knowledge / understanding \& analysis Infinite series to accomplish solutions to complex engineering problems.	L3
4	CO7	PO4	L3	Conduct investigations of complex engineering problems: using research based knowledge and research methods in Infinite series to accomplish solutions to complex engineering problems.	L3
4	CO7	PO9	L3	Individual and team work: Function effectively as an individual in multidisciplinary settings using Infinite series to achieve solutions to complex engineering problems.	L3
4	CO7	PO11	L3	Project management and finance:Demonstrate knowledge to manage projects using Infinite series to attain solutions to complex engineering problems.	L3
4	CO7	PO12	L3	Life-long learning: Recognize the need for life- long learning with practical applications in engineering field using Infinite series.	L3
4	CO8	PO1	L3	‘Engineering Knowledge:' - Acquisition of Knowledge of Power series is essential to accomplish solutions to complex engineering problems.	L3
4	CO8	PO2	L3	'Problem Analysis': Analyzing problems require knowledge / understanding of Power series accomplish solutions to complex engineering problems.	L3
4	CO8	PO3	L3	‘Design / Development of Solutions’: Design \& development of solutions require knowledge / understanding \& analysis Power series to accomplish solutions to complex engineering problems	L3
4	CO8	PO4	L3	Conduct investigations of complex engineering problems: using research based knowledge and research methods in Power series to accomplish solutions to complex engineering problems.	L3
4	CO8	PO9	L3	Individual and team work: Function effectively as an individual in multidisciplinary settings using Power series to achieve solutions to complex engineering problems.	L3
4	CO8	PO11	L3	Project management and finance:Demonstrate knowledge to manage projects using Power series to attain solutions to complex engineering problems.	L3
4	C08	PO12	L3	Life-long learning: Recognize the need for life- long learning with practical applications in engineering field using Power series .	L3
5	CO9	PO1	L3	‘Engineering Knowledge:' - Acquisition of Knowledge of Numerical Methods is essential to accomplish solutions to complex engineering problems.	L3
5	CO9	PO2	L3	'Problem Analysis': Analyzing problems require knowledge / understanding of Numerical Methods accomplish solutions to complex engineering problems .	L3
5	CO9	PO3	L3	‘Design / Development of Solutions’: Design \& development of solutions require knowledge / understanding \& analysis Numerical Methods to accomplish solutions to complex engineering problems.	L3
5	CO9	PO4	L3	Conduct investigations of complex engineering problems: using research based knowledge and research methods in Numerical Methods to accomplish solutions to complex engineering problems.	L3
5	CO9	PO10	L3	Communication: Communicate effectively on complex engineering activities using Numerical Methods.	L3
5	CO9	PO11	L3	Project management and finance:Demonstrate knowledge to manage projects using Numerical Methods to attain solutions to complex engineering problems.	L3
5	CO9	PO12	L3	Life-long learning: Recognize the need for life- long learning with practical applications in engineering field using Numerical Methods .	L3

COURSE PLAN - CAY 2018-19

5	$\begin{gathered} \text { CO1 } \\ 0 \end{gathered}$	PO1	L3	'Engineering Knowledge:' - Acquisition of Knowledge of Numerical Methods is essential to accomplish solutions to complex engineering problems.	L3
5	$\begin{array}{\|c} \text { CO1 } \\ 0 \end{array}$	PO2	L3	'Problem Analysis': Analyzing problems require knowledge / understanding of Numerical Methods accomplish solutions to complex engineering problems .	L3
5	$\begin{array}{\|c} \text { CO1 } \\ 0 \end{array}$	PO3	L3	‘Design / Development of Solutions’: Design \& development of solutions require knowledge / understanding \& analysis Numerical Methods to accomplish solutions to complex engineering problems.	L3
5	$\begin{gathered} \text { CO1 } \\ 0 \end{gathered}$	PO4	L3	Conduct investigations of complex engineering problems: using research based knowledge and research methods in Numerical Methods to accomplish solutions to complex engineering problems.	L3
5	$\begin{gathered} \mathrm{CO} 1 \\ 0 \end{gathered}$	PO9	L3	Individual and team work: Function effectively as an individual in multidisciplinary settings using Numerical Methods to achieve solutions to complex engineering problems.	L3
5	$\begin{gathered} \mathrm{CO} 1 \\ 0 \end{gathered}$	PO11	L3	Project management and finance:Demonstrate knowledge to manage projects using Numerical Methods to attain solutions to complex engineering problems.	L3
5	$\begin{gathered} \mathrm{CO} \\ 0 \end{gathered}$	PO12	L3	Life-long learning: Recognize the need for life- long learning with practical applications in engineering field using Numerical Methods.	L3

4. Articulation Matrix

CO - PO Mapping with mapping level for each CO-PO pair, with course average attainment.

-	-	Course Outcomes	Program Outcomes															-
Mod ules	CO.\#	At the end of the course student should be able to .	$\begin{array}{\|c\|} \hline \mathrm{PO} \\ 1 \end{array}$	PO	$\begin{aligned} & P \\ & O \\ & 3 \end{aligned}$	$\begin{array}{\|c\|c\|} \hline \mathrm{PO} \\ 4 & 4 \\ 3 & \end{array}$	PO					$\begin{gathered} \text { Lev } \\ \mathrm{el} \end{gathered}$						
1	$\begin{gathered} \text { 18MAT21. } \\ 1 \end{gathered}$	Illustrate the applications of 2.5 multivariate calculus to understand the solenoidal and irrotational vectors.	2.5	2.5	$5 \begin{gathered} 2 . \\ 5 \end{gathered}$	2.5					2.5							L3
1	$\begin{gathered} \text { 18MAT21. } \\ 2 \end{gathered}$	Exhibit the interdependence 2 of line, surface and volume integrals.	2.5	2.5	$5 \begin{gathered} 2 . \\ 5 \end{gathered}$	2.5							2.5					L3
2	$\begin{gathered} \text { 18MAT21. } \\ 3 \end{gathered}$	Demonstrate various physical 2.5 models through higher order differential equations and solve such linear .Ordinary differential equation.	2.5	2.5	$5 \begin{gathered} 2 . \\ 5 \end{gathered}$	2.5					2.5							L3
2	$\begin{gathered} \text { 18MAT21. } \\ 4 \end{gathered}$	To study the behaviour of 2 LCR circuits and oscillations of springs using Ordinary differential equation..	2.5	2.5	$5 \begin{gathered} 2 . \\ 5 \end{gathered}$	2.5					2.5							L3
3	$\begin{gathered} \text { 18MAT21. } \\ 5 \end{gathered}$	Construct a variety of partial 2 differential equations.	2.5	2.5	$5 \begin{gathered} 2 . \\ 5 \end{gathered}$	2.5						2.5	2.5	2.5				L3
3	$\begin{gathered} \text { 18MAT21. } \\ 6 \end{gathered}$	To find solution by exact 2 methods/method separation of variables.	2.5	2.5	$5 \begin{gathered} 2 . \\ 5 \end{gathered}$						2.5			2.5				L3
4	$\underset{7}{\text { 18MAT21. }}$	To explain the applications of 2 infinite series.	2.5	2.5	$5 \begin{gathered} 2 . \\ 5 \end{gathered}$	2.5					2.5			2.5				L3
4	$\begin{gathered} \text { 18MAT21. } \\ 8 \end{gathered}$	To obtain series solution $0 f 2.5$ Ordinary differential equation.	2.5	2.5	$5 \begin{gathered} 2 . \\ 5 \end{gathered}$						2.5			2.5				L3
5	$\begin{gathered} \text { 18MAT21 } \\ 9 \end{gathered}$	Apply the knowledge of 2 numerical methods in the modeling of various physical and engineering phenomena.	2.5	2.5	$52 .$	2.5								2.5				L3

COURSE PLAN - CAY 2018-19

5. Curricular Gap and Content

Topics \& contents not covered (from A.4), but essential for the course to address POs and PSOs.

Mod ules	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1	--	--	--	--	--
2	--	--	--	--	

6. Content Beyond Syllabus

Topics \& contents required (from A.5) not addressed, but help students for Placement, GATE, Higher Education, Entrepreneurship, etc.

Mod ules	Gap Topic	Area	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1	--	--	--	--	--	--
1	--	--	--	--	--	--

C. COURSE ASSESSMENT

1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

Modules	Title	$\begin{aligned} & \text { Teach } \\ & \text { Hours } \end{aligned}$	No. of question in Exam						CO	Levels
			CIA-1	CIA-2	CIA-3	Asg	$\begin{array}{\|c\|} \hline \text { Extra } \\ \text { Asg } \\ \hline \end{array}$	SEE		
1	Vector Calculus	10	2	-	-			2		L3
2	Differential Equations of higher order	10	2	-	-			2		L3
3	Partial Differential equations	10	-	2	-			2		L3
4	Infinite and Power series	10	-	2	-			2		L3
5	Numerical Methods and Integration	10	-	-	4			2		L3
-	Total	50	4	4	4			10	-	

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A. 2 .

Mod ules	Evaluation	Weightage in Marks	CO	Levels
1	CIA Exam -1	30	CO1, CO2, CO3,Co4	L3,L3,L3,L3
2	CIA Exam -2	30	CO5, CO6, CO7, C08	L3,L3,L3,L3
3	CIA Exam -3	30	CO9, CO10	L3, L3

1	Assignment -1	10	CO1, CO2, CO3,Co4	L3,L3,L3,L3
2	Assignment -2	10	CO5, CO6, CO7,C08	L3,L3,L3,L3
3	Assignment -3	10	CO9, CO10	L3,L3
	Final CIA Marks	$\mathbf{4 0}$	$\mathbf{-}$	-

D1. TEACHING PLAN - 1

Module - 1

Title:	Vector Calculus	Appr Time:	12 Hrs
a	Course Outcomes	CO	$\begin{gathered} \text { Bloom } \\ \mathbf{s} \end{gathered}$
	The student should be able to:	-	Level
1	Illustrate the applications of multivariate calculus to understand the solenoidal and irrotational vectors and also exhibit the interdependence of line, surface and volume integrals.	CO1	L3
b	Course Schedule		-
Class No	Portion covered per hour	-	-
1	Scalar and Vector fields,	CO1	L3
2	Gradient, directional derivative	CO1	L3
3	curl and divergence-physical interpretation	CO1	L3
4	solenoidal and irrotational vector fields-illustrative problems.	CO1	L3
5	Line Integrals	CO1	L3
6	Theorems of Green, Gauss and Stokes(without proof).	CO2	L3
7	Applications to work done by force and flux.	CO2	L3
c	Application Areas	-	-
1	Used extensively in physics and engineering especially in the description of electromagnetic fields, gravitational fields and fluid flow.	1	L3
1	Used in computational electrodyanmics simulation.	2	L3
d	Review Questions	-	-
1	If $\vec{F}=\nabla\left(x y^{3} z^{2}\right)$ Find $\operatorname{div} \vec{F}$ and $\operatorname{curl} \vec{F}$ at the point ($\left.1,-1,1\right)$	CO. 1	L3
2	Find the angle between the surfaces $x^{2}+y^{2}+z^{2}=9$ and $z=x^{2}+y^{2}-3$ at $(2,-1,2)$	C0.1	L3
3	Find the directional derivative of $\varphi=x^{2} y z+4 x z^{2}$ at $(1,-2,-1)$ in the direction of $2 \mathrm{i}-\mathrm{j}-2 \mathrm{k}$.	CO. 1	L3
4	Find the work done in moving a particle in the force field $\vec{F}=3 x^{2} i+(2 x z-y) j+z k$ along the straight line from $(0,0,0)$ to $(2,1,3)$	C0.1	L3
5	Use the divergence theorem to evaluate $\iint_{S} \vec{F}$. $\hat{n} d s$. Find the flux across the suface, S is the rectangular parallelopiped bounded by $\mathrm{x}=0, \mathrm{y}=0, \mathrm{z}=0, \mathrm{x}=2, \mathrm{y}=1, \mathrm{z}=3$ where $\vec{F}=2 x y i+y z^{2} j+x z k$	C0.1	L3
6	Evaluate by Stokes theorem $\oint(\operatorname{sinzdx}-\cos x d y+\sin y d z)$ where c is the boundary in the rectangle $0 \leqslant x \leqslant \pi, 0 \leqslant y \leqslant 1, z=3$	C0. 1	L3
7	Derive an expression for radius of curvature in case of the polar curve $r=f(\theta)$.	C0. 1	L3
8	Find the radius of curvature at the point ' t ' on the curve $x=a(t+\sin t), y=a(1-\cos t)$.	CO. 1	L3

Module - 2

Title:	Differential Equations of higher order	Appr Time:	7 Hrs
a	Course Outcomes	CO	$\begin{gathered} \text { Bloom } \\ \text { s } \end{gathered}$
-	The student should be able to:		Level
1	Demonstrate various physical models through higher order differential equations and solve such linear ordinary differential equations.	CO. 3	L3
b	Course Schedule		
Class No	Portion covered per hour	-	-
1	Second order Linear ODE's with constant coefficients Inverse differential operators,	C0.3	L3
2	method of variation of parameters	CO. 3	L3
3	Cauchy's homogeneous equations	C0.3	L3
4	Cauchy's homogeneous equations	C0.3	L3
5	Legendre homogeneous equations	CO. 4	L3
6	Legendre homogeneous equations	CO. 4	L3
7	Applications to oscillations of a spring	CO. 4	L3
8	Applications to L-C-R circuits.	CO. 4	L3
9	Applications to L-C-R circuits.	CO. 4	L3
c	Application Areas	CO	Level
2	Used in computational fluid dynamics	3	L3
2	Used in studying the behaviour of LCR circuits and oscillations of springs	4	L3
d	Review Questions		
1	Solve $\left(4 D^{4}-4 D^{3}-23 D^{2}+12 D+36\right) y=0$	CO. 3	L3
2	Solve ($\left.4 D^{4}-8 D^{3}-7 D^{2}+11 D+6\right) y=0$.	C0.3	L3
3	Solve $6 y^{\prime \prime}+17 y^{\prime}+12 y=e^{-x}$	CO. 3	L3
4	Solve $y^{\prime \prime}-4 y^{\prime}+13 y=\operatorname{Cos} 2 x$	CO. 3	L3
5	Solve $y^{\prime \prime}+2 y^{\prime}+5 y=e^{-x} \operatorname{Sin} 2 x$	CO. 4	L3
6	Solve $y^{\prime \prime}-2 y^{\prime}+y=x e^{x} \operatorname{Sin} x$	CO. 4	L3
7	Solve the equation $\frac{d^{2} y}{d x^{2}}-6 \frac{d y}{d x}+25 y=e^{2 x}+\operatorname{Sin} x+x$	CO. 4	L3
8	Solve $\frac{d^{3} y}{d x^{3}}+y=\operatorname{Cos}(\pi / 2-x)+e^{x}$	CO. 4	L3

E1. CIA EXAM - 1

a. Model Question Paper - 1

Crs Code:	18MAT21 Sem:	I	Marks:	50	Time:	1.30 minutes

Course: Advanced Calculus and Numerical Methods

-	Note: Answer any $\mathbf{3}$ questions, each carry equal marks.	CO	CO	Mark \mathbf{s}	
1	a	Solve $\frac{d^{2} x}{d t^{2}}+4 \frac{d x}{d t}+29 x=0$. Find y when $x(0)=0 \quad$ and $\frac{d x}{d t}(0)=15$	CO3	L3	6

	b	Solve $\left(D^{3}+D^{2}-4 D-4\right) y=3 e^{-x}-4 x-6$	CO3	L3	6
	c	Solve by the method of variation of parameters $\frac{d^{2} y}{d x^{2}}-6 \frac{d y}{d x}+9 y=\frac{e^{3 x}}{x^{2}}$	CO3	L3	6
	d	Solve $x^{2} y^{\prime \prime}+5 x y^{\prime}+13 y=\log x+x^{2}$	CO3	L3	7
		OR			
2	a	Solve $\frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}+2 y=1+3 x+x^{2}$	CO3	L3	6
	b	Solve by the method of variation of parameters $y^{\prime \prime}-y=\frac{2}{1+e^{x}}$	CO3	L3	6
	c	Solve ($\left.D^{4}+8 D^{2}+16\right) y=2 \cos ^{2} x$	CO3	L3	6
	d	Solve $(3 x+2)^{2} y^{\prime \prime}+3(3 x+2) y^{\prime}-36 y=8 x^{2}+4 x+1$	CO3	L3	7
3	a	$\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+10 y+37 \sin 3 x=0 . \text { Find } y$	CO3	L3	6
	b	Obtain the PDE by eliminating the arbitrary function $z=f(x+a t)+g(x-a t)$	CO5	L3	6
	c	Form a PDE by eliminating arbitrary constants $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$	CO5	L3	6
	d	Solve $\frac{\partial^{2} z}{\partial x \partial y}=\frac{x}{y}$ subject to the conditions $\frac{\partial z}{\partial x}=\log x$ when $\mathrm{y}=1$ and $\mathrm{z}=0$ at $\mathrm{x}=1$.	CO5	L3	7
		OR			
4	a	Solve $\quad\left(D^{3}+3 D^{2}\right) x=1+t$	CO3	L3	6
	b	Obtain the PDE of the function $\varphi\left(x y+z^{2}, x+y+z\right)=0$	CO5	L3	6
	c	Obtain The PDE by eliminating φ and ψ from the relation $z=x \varphi(y)+y \psi(x)$	CO5	L3	6
	d	Solve $\frac{\partial^{2} z}{\partial x \partial y}=\sin x \sin y$ given that $\frac{\partial z}{\partial y}=-2$ siny when $\mathrm{x}=0$ \& $\mathrm{z}=0$ when y is an odd multiple of $\frac{\pi}{2}$	CO5	L3	7

b. Assignment -1

Note: A distinct assignment to be assigned to each student.

Model Assignment Questions						
Crs Code:	18 MAT2Sem:	II	Marks:	10	Time:	
Course:	Advanced Methods	Calculus and	Numerical			

Note: Each student to answer 3 assignments. Each assignment carries equal mark.

SNo USN

Assignment Description

COURSE PLAN - CAY 2018-19

		s		
1	Solve $\left(4 D^{4}-4 D^{3}-23 D^{2}+12 D+36\right) y=0$	5	CO. 3	L3
2	Solve $\left(4 D^{4}-8 D^{3}-7 D^{2}+11 D+6\right) y=0$	5	CO. 3	L3
3	Solve $6 y^{\prime \prime}+17 y^{\prime}+12 y=e^{-x}$	5	CO. 3	L3
4	Solve $y^{\prime \prime}-4 y^{\prime}+13 y=\operatorname{Cos} 2 x$	5	CO. 3	L3
5	Solve $y^{\prime \prime}+2 y^{\prime}+5 y=e^{-x} \operatorname{Sin} 2 x$	5	CO. 4	L3
6	Solve $y^{\prime \prime}-2 y^{\prime}+y=x e^{x} \operatorname{Sin} x$	5	CO. 4	L3
7	Solve the equation $\frac{d^{2} y}{d x^{2}}-6 \frac{d y}{d x}+25 y=e^{2 x}+\operatorname{Sin} x+x$	5	CO. 4	L3
8	Solve $\frac{d^{3} y}{d x^{3}}+y=\operatorname{Cos}(\pi / 2-x)+e^{x}$	5	CO. 4	L3
9	Solve $\frac{d^{2} x}{d t^{2}}+4 \frac{d x}{d t}+29 x=0$. Find y when $\mathrm{x}(0)=0$ and $\frac{d x}{d t}(0)=15$	5	CO4	L3
10	Solve $\left(D^{3}+D^{2}-4 D-4\right) y=3 e^{-x}-4 x-6$	5	CO3	L3
11	Solve by the method of variation of parameters $\frac{d^{2} y}{d x^{2}}-6 \frac{d y}{d x}+9 y=\frac{e^{3 x}}{x^{2}}$	5	CO4	L3
12	Solve $x^{2} y^{\prime \prime}+5 x y^{\prime}+13 y=\log x+x^{2}$	5	CO3	L3
13	Solve $\frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}+2 y=1+3 x+x^{2}$	5	CO3	L3
14	Solve by the method of variation of parameters $y^{\prime \prime}-y=\frac{2}{1+e^{x}}$	5	CO4	L3
15	Solve $\left(D^{4}+8 D^{2}+16\right) y=2 \cos ^{2} x$	5	CO3	L3
	Solve $(3 x+2)^{2} y^{\prime \prime}+3(3 x+2) y^{\prime}-36 y=8 x^{2}+4 x+1$	5	CO3	L3
3	$\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+10 y+37 \sin 3 x=0 . \text { Find } y$	5	CO3	L3
16	Obtain the PDE by eliminating the arbitrary function $z=f(x+a t)+g(x-a t)$	5	CO5	L3
17	Form a PDE by eliminating arbitrary constants $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$	5	CO5	L3
18	Solve $\frac{\partial^{2} z}{\partial x \partial y}=\frac{x}{y}$ subject to the conditions $\frac{\partial z}{\partial x}=\log x$ when $\mathrm{y}=1$ and $\mathrm{z}=0$ at $\mathrm{x}=1$.	5	CO5	L3
19	Solve $\left(D^{3}+3 D^{2}\right) x=1+t$	5	CO3	L3

COURSE PLAN - CAY 2018-19

| | | | | |
| :---: | :--- | :--- | :---: | :---: | :---: |
| 20 | Obtain the PDE of the function $\varphi\left(x y+z^{2}, x+y+z\right)=0$ | 5 | CO5 | L3 |
| 21 | Obtain The PDE by eliminating φ and ψ from the
 relation
 $z=x \varphi(y)+y \psi(x)$ | 5 | CO5 | L3 |
| 22 | Solve $\frac{\partial^{2} z}{\partial x \partial y}=\operatorname{sinxsiny~given~that~} \frac{\partial z}{\partial y}=-2 \sin y$
 when $x=0 \& z=0$ when y is an odd multiple of $\frac{\pi}{2}$ | 5 | CO5 | L3 |

D2. TEACHING PLAN - 2

Module - 3

Title:	Partial differential equations	Appr Time:	12 Hrs
a	Course Outcomes	CO	$\underset{s}{\substack{\text { Bloom } \\ \hline}}$
-	The student should be able to:		Level
1	Construct a variety of partial differential equations and solution by exact methods/method of separation of variables	CO. 5	L3
b	Course Schedule		
Class	Portion covered per hour	-	-
1	Formation of PDE's by elimination of arbitrary constants	CO. 5	L3
2	Formation of PDE's by elimination of arbitrary functions	CO. 5	L3
3	Solution of non-homogeneous PDE by direct integration	CO. 5	L3
4	Homogeneous PDEs involving derivative with respect to one independent variable only	CO. 5	L3
5	Solution of Lagrange's linear PDE.	CO. 5	L3
6	Derivative of one dimensional heat equations	C0. 6	L3
7	Derivative of one dimensional wave equations	CO. 6	L3
8	solutions by the method of separation of variables.	C0.6	L3
c	Application Areas	-	-
3	It is used to describe a wide variety of phenomena such as sound, heat and diffusion.	CO. 5	L3
3	It is used to describe a wide variety of phenomena such as electrostatics,electrodynamics and quantum mechanics.	CO. 6	L3
d	Review Questions	-	-
		-	
1	Solve by eliminating arbitrary constants a) $2 z=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$, b). $(x-a)^{2}+(y-b)^{2}=z^{2} \operatorname{Cot}^{2} \alpha$	CO. 5	L3
2	Solve by eliminating arbitrary functions 1 . $\left.z=y^{2}+2 f\left[\frac{1}{x}+\log y\right)\right], 2 . z=y f(x)+x \varphi(y)$	CO. 5	L3
3	Find the solution of the heat equation by the method of separation of variables.	CO. 6	L3
4	Find the solution of the wave equation by the method of separation of variables.	CO. 6	L3
5	Derive D'Alemberts solution of the wave equation.	CO. 6	L3

6	A tightly stretched string with fixed end points at $x=0, x=l$ is initially in a position $y=a \sin ^{3} \frac{\Pi x}{l} \frac{\square}{0}$ and released from rest. Find the displacement $y(x, t)$ at any time t	C0.6	L3
7	A string is stretched and fastened to two points I apart. Motion is started by displacing the string in the form $y=a \sin \frac{\Pi x}{l} \frac{\square}{\square}$ from which it is released at time $t=0$. show that the displacement of any point at a distance x from one and at time t 	C0.6	L3
8	Derive one dimentional Heat equation.	CO. 6	L3
9	Derive one dimensional wave equation. Find the solution of two - dimentional Laplace equation by the method of separation of variables.	C0.6	L3
10	Find the solution of two - dimentional Laplace equation by the method of separation of variables.	C0.6	L3
11	An insulated rod of length l has its end Aand B maintained at $0^{0} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ respectively until steady state condition prevail. If B is suddenly reduce to $0^{\circ} \mathrm{C}$ and maintained at O^{0} c.find the temperature at a distance x from A at time ' t ',	C0. 6	L3
12	Solve by direct integration $\frac{\partial z}{\partial y}=-2 \operatorname{Sin} y$	C0. 5	L3
13	Solve by direct integration $\frac{\partial^{2} z}{\partial x^{2}}+4 z=0$	CO. 5	L3
14	Solve by direct integration $\frac{\partial^{3} z}{\partial x^{2} \partial y}=\operatorname{Cos}(2 x+3 y)$	CO. 5	L3

Module - 4

Title:	Infinite series and Power series solutions	Appr Time:	13 Hrs
a	Course Outcomes	CO	Bloom s
-	The student should be able to:	-	Level
1	Explain the applications of infinite series and obtain series solution of ordinary differential equation	CO. 7	L3
b	Course Schedule		
$\begin{gathered} \text { Class } \\ \text { No } \end{gathered}$	Portion covered per hour	-	-
1	Series of positive terms-convergence and divergence.	CO. 7	L3
2	Cauchy's root test	CO. 7	L3
3	D'Alembert's ratio test(without proof)-illustrative examples.	CO. 7	L3
4	Series solution of Bessel's differential equation	CO. 8	L3
5	Bessel's function of first kind-orthogonality	CO. 8	L3
6	Series solution of Legendre differential equation	CO. 8	L3
7	Legendre polynomial	CO. 8	L3
8	Rodrigue's formula	CO. 8	L3
c	Application Areas	-	-
4	It is used for analysis of current flow and sound waves in electric circuits.	7	L3
4	It is used in nuclear engineering analysis.	8	L3
d	Review Questions	-	-

1	Test the convergence of $\sum_{n=1}^{\infty} \frac{n^{n} x^{n}}{(n+1)^{n}} \quad, x>0$	CO7	L3
2	Obtain the range of convergence of the series $\frac{2 x}{1^{2}}+\frac{3^{2} x^{2}}{2^{3}}+\frac{4^{3} x^{3}}{3^{4}}+\frac{5^{4} x^{4}}{4^{5}}+\ldots ; x>0$	CO7	L3
3	Test for convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{n!}{\left(n^{n}\right)^{2}}$	CO7	L3
4	Test for convergence or divergence of the series $\frac{1}{2 \sqrt{1}}+\frac{x^{2}}{3 \sqrt{2}}+\frac{x^{4}}{4 \sqrt{3}}+\ldots \ldots \ldots . ., x>0$	CO7	L3
5	Test the convergence of the series: $1+\frac{2^{2}}{2!}+\frac{3^{2}}{3!}+\frac{4^{2}}{4!}+\ldots$	CO7	L3
6	Test the convergence of the series: $\left[\frac{2^{2}}{1^{2}}-\frac{2}{1}\right]^{-1}+\left[\frac{3^{3}}{2^{3}}-\frac{3}{2}\right]^{-2}+\left[\frac{4^{4}}{3^{4}}-\frac{4}{3}\right]^{-3}+\ldots \ldots \ldots$	CO7	L3
7	Let us discuss the convergence of the series $\sum_{n=1}^{\infty} \frac{(n+1)^{n} x^{n}}{n^{n+1}}$	CO7	L3
8	Prove that $\quad J_{1 / 2}(x)=\sqrt{\frac{2}{\pi x}} \sin x$	C0.8	L3
9	Express $f(x)=x^{4}+3 x^{3}-x^{2}+5 x-2$ in terms of legendres polynomials.	CO. 8	L3
10	Express the following polynomials in terms of legendres polynomials $(x+1)(x+2)(x+3)$	C0.8	L3
11	If α and β are the roots of $J_{n}(x)=0$ then $\int_{0}^{1} x J_{n}(\alpha x) J_{n}(\beta x) d x=0$; if $\alpha \neq \beta$	CO. 8	L3
12	Using Rodrigues formula, obtain the expressions for $P_{2}(\cos \theta), P_{3}(\cos \theta)$	CO8	L3
13	Use Rodrigue's formula to find $P_{n}(x)$ for $\mathrm{n}=0,1,2,3,4$	CO. 8	L3
14	If $x^{3}+2 x^{2}-x+1=a P_{0}(x)+b P_{1}(x)+c P_{2}(x)+d P_{3}(x)$. Find the values of a,b,c,d	CO. 8	L3
15	Let us discuss the convergence of the series $\sum_{n=1}^{\infty} \frac{(n+1)^{n} x^{n}}{n^{n+1}}$	CO. 8	L3
16	Prove that $\quad J_{-1 / 2}(x)=\sqrt{\frac{2}{\pi x}} \cos x$	CO. 8	L3
17	Derive series solution of Bessels DE leading to Bessel functions.	CO. 8	L3

Module - 5

Title:	Numerical Methods	Appr Time:	13 Hrs \mathbf{a} Course Outcomes
-	The student should be able to:	Bloom \mathbf{s}	

1	Explain the applications of infinite series and obtain series solution of CO.9 ordinary differential equation								L3
b	Course Schedule								
Class No	Portion covered per hour							-	-
1	Finite diferences							CO. 9	L3
2	Newtons forward and backward difference formula							CO. 9	L3
3	Newtons divdede difference formula							CO. 9	L3
4	Lagranges formula							CO. 9	L3
5	Newton raphson							CO. 9	L3
6	Regula falsi method							CO. 9	L3
7	Numerical integrations,							$\begin{gathered} \mathrm{CO} .1 \\ 0 \end{gathered}$	L3
8	Simpsons 1/3 rd rule problems							$\begin{gathered} \text { CO. } 1 \\ 0 \end{gathered}$	L3
9	Simpsons 3/8 th rule problems							$\begin{gathered} \mathrm{CO} .1 \\ 0 \end{gathered}$	L3
10	Weddles rule and problems							$\begin{gathered} \mathrm{CO} .1 \\ 0 \end{gathered}$	L3
c	Application Areas							-	-
5	Used in network simulation and weather prediction							9	L3
5	Used in computer science for root algorithm and multidimensional root finding.							10	L3
d	Review Questions							-	
1	From the following table find the number of students who have obtained less than 45							C0.9	L3
	Marks	30-40	40-50	50-60	60-70	70-80			
	No. of students	31	42	51	35	31			
2	Using Lagranges formula find the value of y at $x=6$ by the following table							$\text { CO. } 9$	L3
	x	0	1		2		5		
		2	3		12		147		
3	Find $\int_{4}^{5.2}(\log x) d x$ using weddles rule taking the step size of 0.2							$\begin{gathered} \mathrm{CO} .1 \\ 0 \end{gathered}$	L3
4	Evaluate $\int_{0}^{1}\left(\frac{x}{1+x^{2}}\right) d x$ by using simpson's (1/3) rd rule dividing the interval into 6 equal parts. Hence find an approximate value of $\log \sqrt{2}$							$\begin{gathered} \mathrm{CO} .1 \\ 0 \end{gathered}$	L3
5	Using the Newtons Raphson method find the real root of the equation $3 x=\cos x+1$							$\begin{gathered} \mathrm{CO} .1 \\ 0 \end{gathered}$	L3
6	Using Regula-falsi method find the real root of the equation $x \log _{10} x=1.2$							$\begin{gathered} \mathrm{CO} .1 \\ 0 \end{gathered}$	L3
7	The area of a circle (A) corresponding to the diameter (D) is given below.							$\begin{gathered} \mathrm{CO} .1 \\ 0 \end{gathered}$	L3
	D	80	85	90	95		100		

COURSE PLAN - CAY 2018-19

	A	5026	5674	6362	7088	7854
	Find the area corresponding to diameter 105 using an appropriate interpolation formula.					
7	Evaluate $\int_{0}^{0.3} \sqrt{1-8 x^{3}} d x$ by using simpson's (3/8) th rule by taking CO.1 7 ordinates.	L3				
8	Using the Newtons Raphson method find the real root of the equation $3 x=\operatorname{sinx}+1$	CO.1	L3			

E2. CIA EXAM - 2

a. Model Question Paper - 2

Crs Code:	18MAT21	Sem:	II	Marks:	50	Time:

Course: Advanced Calculus and Numerical Methods

-		Note: Answer all questions, each carry equal marks. Module : 3, 4						CO	Level	$\begin{gathered} \text { Mark } \\ \mathrm{s} \end{gathered}$
1	a	If $\vec{F}=\nabla\left(x y^{3} z^{2}\right)$ Find $\operatorname{div} \vec{F}$ and $\operatorname{curl} \vec{F}$ at the point ($\left.1,-1,1\right)$						CO. 1	L3	6
	b	Find the angle between the surfaces $x^{2}+y^{2}+z^{2}=9$ and $z=x^{2}+y^{2}-3$ at $(2,-1,2)$						CO. 1	L3	6
	c	Find the directional derivative of $\varphi=x^{2} y z+4 x z^{2}$ at $(1,-2,-1)$ in the direction of $2 \mathrm{i}-\mathrm{j}-2 \mathrm{k}$.						CO. 2	L3	6
	d	Show that $\vec{F}=(y+z) i+(z+x) j+(x+y) k$ is irrotational. Also find a scalar function φ such that $\vec{F}=\nabla \varphi$						CO. 2	L3	7
		OR								
2	a	Find the work done in moving a particle in the force field $\vec{F}=3 x^{2} i+(2 x z-y) j+z k$ along the straight line from $(0,0,0)$ to $(2,1,3)$						CO. 1	L3	6
	b	Use the divergence theorem to evaluate $\iint_{S} \vec{F}$. $\hat{n} d s$. Find the flux across the suface, S is the rectangular parallelopiped bounded by $\mathrm{x}=0, \mathrm{y}=0, \mathrm{z}=0, \mathrm{x}=2, \mathrm{y}=1, \mathrm{z}=3$ where $\vec{F}=2 x y i+y z^{2} j+x z k$						CO. 1	L3	6
	c	Evaluate by Stokes theorem $\oint(\sin z d x-\cos x d y+\sin y d z)$ where c is the boundary in the rectangle $0 \leqslant x \leqslant \pi, 0 \leqslant y \leqslant 1, z=3$						CO. 2	L3	6
	d	By using Greens theorem evaluate $\int_{c}((y-\sin x) d x+\cos x d y)$ where c is the triangle in the xy -plane bounded by the lines $x=0, y=0, x=\pi / 2, y=2 x / \pi$						CO. 2	L3	7
3	a	From the following table find the number of students who have obtained less than 45						CO. 9	L3	6
		Marks	30-40	40-50	50-60					

COURSE PLAN - CAY 2018-19

b. Assignment - 2

Note: A distinct assignment to be assigned to each student.

COURSE PLAN - CAY 2018-19

3	Test for convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{n!}{\left(n^{n}\right)^{2}}$	5	CO7	L3
4	Test for convergence or divergence of the series $\frac{1}{2 \sqrt{1}}+\frac{x^{2}}{3 \sqrt{2}}+\frac{x^{4}}{4 \sqrt{3}}+\ldots \ldots \ldots, x>0$	5	CO7	L3
5	Test the convergence of the series: $1+\frac{2^{2}}{2!}+\frac{3^{2}}{3!}+\frac{4^{2}}{4!}+\ldots \ldots \ldots$	5	CO7	L3
6	Test the convergence of the series: $\left[\frac{2^{2}}{1^{2}}-\frac{2}{1}\right]^{-1}+\left[\frac{3^{3}}{2^{3}}-\frac{3}{2}\right]^{-2}+\left[\frac{4^{4}}{3^{4}}-\frac{4}{3}\right]^{-3}+\ldots \ldots \ldots$	5	CO7	L3
7	Let us discuss the convergence of the series $\sum_{n=1}^{\infty} \frac{(n+1)^{n} x^{n}}{n^{n+1}}$	5	CO7	L3
8	Prove that $\quad J_{1 / 2}(x)=\sqrt{\frac{2}{\pi x}} \sin x$	5	CO. 8	L3
9	Express $f(x)=x^{4}+3 x^{3}-x^{2}+5 x-2$ in terms of legendres polynomials.	5	C0.8	L3
10	Express the following polynomials in terms of legendres polynomials $(x+1)(x+2)(x+3)$	5	CO. 8	L3
11	If α and β are the roots of $J_{n}(x)=0$ then $\int_{0}^{1} x J_{n}(\alpha x) J_{n}(\beta x) d x=0$; if $\alpha \neq \beta$	5	CO. 8	L3
12	Using Rodrigues formula, obtain the expressions for $P_{2}(\cos \theta), P_{3}(\cos \theta)$	5	C0. 8	L3
13	Use Rodrigue's formula to find $P_{n}(x)$ for $\mathrm{n}=0,1,2,3,4$	5	CO. 8	L3
14	If $x^{3}+2 x^{2}-x+1=a P_{0}(x)+b P_{1}(x)+c P_{2}(x)+d P_{3}(x)$. Find the values of $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$	5	CO. 8	L3
15	Let us discuss the convergence of the series $\sum_{n=1}^{\infty} \frac{(n+1)^{n} x^{n}}{n^{n+1}}$	5	C0. 7	L3
16	Prove that $\quad J_{-1 / 2}(x)=\sqrt{\frac{2}{\pi x}} \cos x$	5	CO. 8	L3
17	Derive series solution of Bessels DE leading to Bessel functions.	5	CO. 8	L3

F. EXAM PREPARATION

1. University Model Question Paper

Cours		Advanced	lculus a	m	ethods		Month /	/ Year	May 1	2018
Crs C	Code:	18MAT21	Sem:		Marks:		Time:		180 minut	
Mod ule	Not e	Answer all	VE full		estions	equ	ks.	$\begin{gathered} \text { Mark } \\ \mathrm{s} \end{gathered}$	CO	$\begin{gathered} \text { Leve } \\ \mathrm{I} \end{gathered}$
1	a	If $\vec{F}=\nabla(x$	z ${ }^{2}$ Fin		$\mathrm{rl} \vec{F}$ at	oint		6	CO. 1	L3
	b	Find the a $z=x^{2}+y^{2}-$	le betw at (2,		$\text { es } x^{2}+y^{2}$	$=9$		7	CO. 1	L3
	C	Evaluate the b	Stokes ndary			$\begin{aligned} & +\sin y c \\ & 0 \leqslant y \end{aligned}$	ere c is $2=3$	7	CO. 2	L3
2	a	$\begin{aligned} & \text { Find the } \\ & \vec{F}=3 x^{2} i+(\\ & (2,1,3) \end{aligned}$	$\begin{aligned} & \text { done } \\ & z-y) j \end{aligned}$		ticle in raight lin	force rom	to	6	CO. 1	L3
		Use the d across the by $x=0, y=$	rgence uface, $z=0, x=$		luate \iint ular para re $\vec{F}=2$	$\hat{n} d s$ pipe $+y z^{2} .$	the flux unded	7	CO. 2	L3
	c	Find the the direct	$\begin{aligned} & \text { ectional } \\ & \text { 1 of } 2 \mathrm{i} \end{aligned}$		$0=x^{2} y z+$	$z^{2} \text { at }$	$-1) \text { in }$	7	CO. 1	L3
3	a	Solve $\frac{d^{2} x}{d t^{2}}$	$\frac{d x}{d t}+2 s$		$\text { hen } x(0)$	and	$0)=15$	6	CO3	L3
	b	Solve (D^{3}	$D^{2}-4 D$		$x-6$			7	CO. 3	L3
		Solve by $\frac{d^{2} y}{d x^{2}}-6 \frac{d y}{d x}$	$9 y=\frac{e^{3}}{x^{2}}$	va	of param			7	CO4	L3
4	a	Solve $\frac{d^{2} y}{d x^{2}}$	$\frac{d y}{d x}+2 .$					6	CO. 3	L3
	b	Solve by	met		of param	ers	$y=\frac{2}{1+e^{x}}$	7	CO. 4	L3
	c	Solve (D^{4}	$D^{2}+16$					7	CO. 3	L3
5	a	Obtain th $z=f(x+a t)$	$\begin{aligned} & \text { PDE by } \\ & \text { a(x-at) } \end{aligned}$	ina	arbitra	unct		6	CO. 5	L3
		Form a	by eli		y con	$\text { ts } \frac{x^{2}}{a^{2}}$	$+\frac{z^{2}}{c^{2}}=1$	7	CO5	L3

	C	Solve $\frac{\partial^{2} z}{\partial x \partial y}=\frac{x}{y}$ subject to the conditions $\frac{\partial z}{\partial x}=\log x$ when $y=1$ and $z=0$ at $x=1$.						7	CO. 6	L3
		OR								
6	a	Obtain the PDE of the function $\varphi\left(x y+z^{2}, x+y+z\right)=0$						6	CO. 5	L3
	b	Obtain The PDE by eliminating φ and ψ from the relation$z=x \varphi(y)+y \psi(x)$						7	C06	L3
	C	Solve $\frac{\partial^{2} z}{\partial x \partial y}=\sin x \sin y$ given that $\frac{\partial z}{\partial y}=-2$ siny when $\mathrm{x}=0$ \& $\mathrm{z}=0$ when y is an odd multiple of $\frac{\pi}{2}$						7	C0.6	L3
7	a	Test the convergence of $\sum_{n=1}^{\infty} \frac{n^{n} x^{n}}{(n+1)^{n}} \quad, x>0$ Obtain the range of convergence of the series$\frac{2 x}{1^{2}}+\frac{3^{2} x^{2}}{2^{3}}+\frac{4^{3} x^{3}}{3^{4}}+\frac{5^{4} x^{4}}{4^{5}}+\ldots \ldots . . . ; x>0$						6	C0.7	L3
	b							7	C0. 7	L3
	c	Prove that $\quad J_{1 / 2}(x)=\sqrt{\frac{2}{\pi x}} \sin x$						7	CO. 8	L3
				O						
8	a	Test for convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{n!}{\left(n^{n}\right)^{2}}$						6	C0.7	L3
	b	Test for convergence or divergence of the series$\frac{1}{2 \sqrt{1}}+\frac{x^{2}}{3 \sqrt{2}}+\frac{x^{4}}{4 \sqrt{3}}+\ldots \ldots \ldots, x>0$						7	C0.7	L3
	c	If α and β are the roots of $J_{n}(x)=0$ then $\int_{0}^{1} x J_{n}(\alpha x) J_{n}(\beta x) d x=0$; if $\alpha \neq \beta$						7	C0.8	L3
9	a	From the following table find the number of students who have obtained less than 45						6	CO9	L3
		Marks	30-40	40-50	50-60	60-70	70-80			
		No. of students	31	42	51	35	31			
	b	Using Lagranges formula find the value of y at $x=6$ by the following table						7	C09	L3
		x	0	1		2	5			
		y	2	3		12	147			
	C Find $\int_{4}^{5.2}(\log x) d x$ using weddles rule taking the step size of 0.2							7	CO10	L3
		OR								

10	a	Using the Newtons Raphson method find the real root of the equation $3 x=\cos x+1$					6	CO9	L3
	b	Using Regula-falsi method find the real root of the equation $x \log _{10} x=1.2$					7	CO9	L3
	c	The area of a circle (A) corresponding to the diameter (D) is given below.					7	C010	L3
		D 80	85	90	95	100			
		A 5026	5674	6362	7088	7854			
		Find the area corresponding to diameter 105 using an appropriate interpolation formula.							

2. SEE Important Questions

4	a	Solve $\frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}+2 y=1+3 x+x^{2}$	6	CO3	2013
	b	Solve by the method of variation of parameters $y^{\prime \prime}-y=\frac{2}{1+e^{x}}$	7	CO3	2012
	C	Solve $\left(D^{4}+8 D^{2}+16\right) y=2 \cos ^{2} x$	7	CO4	2012
					2012
5	a	$\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+10 y+37 \sin 3 x=0 . \text { Find } y$	6	C05	2010
	b	Solve $x^{2} y^{\prime \prime}+5 x y^{\prime}+13 y=\log x+x^{2}$	7	CO5	2010
	c	Solve $(3 x+2)^{2} y^{\prime \prime}+3(3 x+2) y^{\prime}-36 y=8 x^{2}+4 x+1$	7	C06	2012
		OR			2012
6	a	Solve $x^{2} y^{\prime \prime}+5 x y^{\prime}+13 y=\sin x+x^{2}$	6	CO5	
	b	Solve $(3 x+2)^{2} y^{\prime \prime}+3(3 x+2) y^{\prime}-36 y=8 x^{3}+2 x 2 \sin x$	7	CO5	2012
	c	$\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+10 y+37 \sin 3 x=0 . \text { Find } y$	7	CO6	2013
7	a	Obtain the PDE by eliminating the arbitrary function $z=f(x+a t)+g(x-a t)$	6	CO7	2010
	b	Form a PDE by eliminating arbitrary constants $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$	7	CO7	2014
	C	Solve $\frac{\partial^{2} z}{\partial x \partial y}=\frac{x}{y}$ subject to the conditions $\frac{\partial z}{\partial x}=\log x$ when $y=1$ and $z=0$ at $x=1$.	7	CO8	2015
		OR			
7	a	Test the convergence of $\sum_{n=1}^{\infty} \frac{n^{n} x^{n}}{(n+1)^{n}} \quad, x>0$	6	CO7	2006
	b	Obtain the range of convergence of the series $\frac{2 x}{1^{2}}+\frac{3^{2} x^{2}}{2^{3}}+\frac{4^{3} x^{3}}{3^{4}}+\frac{5^{4} x^{4}}{4^{5}}+\ldots ; x>0$	7	CO7	2008
	c	Prove that $J_{1 / 2}(x)=\sqrt{\frac{2}{\pi x}} \sin x$	7	CO8	2016
		OR			
8	a	Test for convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{n!}{\left(n^{n}\right)^{2}}$	6	C07	2008
	b	Test for convergence or divergence of the series $\frac{1}{2 \sqrt{1}}+\frac{x^{2}}{3 \sqrt{2}}+\frac{x^{4}}{4 \sqrt{3}}+\ldots \ldots \ldots, x>0$	7	CO7	2006
	c	If α and β are the roots of $J_{n}(x)=0$ then	7	CO8	2014

G. Content to Course Outcomes

1. TLPA Parameters

Table 1: TLPA - Example Course

Mo dul e- \#	Course Content or Syllabus (Split module content into 2 parts which have similar concepts)	Conten t Teachin g Hours	Blooms' Learnin g Levels for Content	Final Bloo ms' Leve I	Identifie d Action Verbs for Learning	Instructi on Method s for Learnin g	Assessmen t Methods to Measure Learning
A	B	C	D	E	F	G	H
1	Scalar and Vector fields, Gradient, directional derivative,curl and divergence-physical interpretation: solenoidal and irrotational vector fieldsillustrative problems.	4	- L3	L3	underst and	Lecture	- Slip Test
1	Line Integrals, Theorems of Green, Gauss and Stokes(without proof). Applications to work done by force and flux.	6	- L3	L3	-analyze	Lecture Tutorial	Assignmen t
2	Second order Linear ODE's with constant	4	- L3	L3	-apply	-	-

	coefficients-Inverse differential operators, method of variation of parameters.		- L3			Lecture A	Assignmen
2	Cauchy's and Legendre homogeneous equations. Applications to oscillations of a spring and L-C-R circuits.	6	- L3	L3	-apply	Lecture	Slip Test
3	Formation of PDE's by elimination of arbitrary constants and functions. Solution of non-homogeneous PDE by direct integration. Homogeneous PDEs involving derivative with respect to one independent variable only. Solution of Lagrange's linear PDE. Derivative of one dimensional heat and wave equations and solutions by the method of separation of variables.	6	- L3	L3	underst and	Lecture	- Slip Test
3	Derivative of one dimensional heat and wave equations and solutions by the method of separation of variables.	4	- L3	L3	apply	Lecture Tutorial	Assignmen
4	Series of positive terms-convergence and divergence. Cauchy's root test and D'Alembert's ratio test(without proof)illustrative examples.	5	- L3	L3	analyze	Lecture Tutorial	Assignmen
4	Series solution of Bessel's differential equation leading to $\mathrm{Jn}(\mathrm{x})$-Bessel's function of first kind-orthogonality. Series solution of Legendre polynomials. Rodrigue's formula(without proof), problems.	5	- L3	L3	apply		Assignmen
5	Finite Interpolation/extrapolation differences, Newton's forward and backward difference formulae, Newton's divided difference and Lagrange's formulae(All formulae without proof).	5	- L3	L3	-analyze	Lecture	Assignmen t
5	Solution of polynomial and transcendental equations- NewtonRaphson and Regula-Falsi methods(only formulae)-illustrative examples.Simpson's $(1 / 3)^{\text {rd }}$ and $(3 / 8)^{\text {th }}$ rules, Weddle's rule(without proof)-Problems.	5	L3	L3	apply	Lecture	Assignmen
-	Total			-			

2. Concepts and Outcomes:

Table 2: Concept to Outcome - Example Course

$\begin{array}{\|c\|} \hline \mathrm{Mo} \\ \mathrm{dul} \\ \mathrm{e}- \\ \# \end{array}$	Learning or Outcome from study of the Content or Syllabus	Identified Concepts from Content	Final Concept	Concept Justification (What all Learning Happened from the study of Content / Syllabus. A short word for learning or outcome)	CO Components (1.Action Verb, 2.Knowledge, 3.Condition / Methodology, 4.Benchmark)	Course Outcome Student Should be able to ...
A	I	J	K	L	M	N

		Vector Differentia tion	Illustrate the applications of multivariate calculus to understand the solenoidal and irotational vectors.	eVector ffDifferentiation	Illustrate Vector Differentiation
		Vector Integration	Exhibit the interdependence of line, surface and volume integrals.	Vector Integration	Analyze Vector Integration
	Second ODE order Linear ODEs with ODStant constant coefficients- Inverse differential operators, method of variation of parameters.	Ordinary Differential equations	Demonstrate various physical models through higher order differential equations and solve such linear.Ordinary differential equation.	Ordinary Differential hequations	Analyze Ordinary Differential equations
2	Cauchy's ODE and Legendre homogeneo us equations. Applications to oscillations of a spring and L-C-R circuits.	Ordinary Differential equations	To study the behaviour of LCR circuits and oscillations r of springs using Ordinary differential equation.. 	Ordinary Differential dequations	Analyze Ordinary Differential equations
3	Formation ofPDE PDE's by elimination of arbitrary constants and functions. Solution of	Partial Differential equations	Construct aP \quad ar variety of differential equations.	aPartial Differentia lequations	Analyze Partial Differential equations

non- homogeneo us PDE by direct integration. Homogeneo us PDEs involving derivative with respect to one independent variable only. Solution of Lagrange's linear PDE. Derivative of one dimensional heat and wave equations and solutions by the method of separation of variables.					
3 Derivative of one dimensional heat and wave equations and solutions by the method of separation of variables.	Partial Differential equations	To find solution by exact methods/method of separation of variables.	Partial Differential equations	Analyze Differential equations	Partial
4 Series of positive termsconvergence and divergence. Cauchy's root test and D'Alembert' s ratio test(without proof)illustrative examples.	Infinite series	To explain the applications of infinite series.	finite series	Undrstand series	Infinite
4 Series solution of Bessel's differential equation	Power series	To obtain seriesP solution Of Ordinary differential equation.	Power series	Analyze series	Power

